skip to main content


Search for: All records

Creators/Authors contains: "Huang, Fei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Electric currents have the intriguing ability to induce magnetization in nonmagnetic crystals with sufficiently low crystallographic symmetry. Some associated phenomena include the non-linear anomalous Hall effect in polar crystals and the nonreciprocal directional dichroism in chiral crystals when magnetic fields are applied. In this work, we demonstrate that the same underlying physics is also manifested in the electronic tunneling process between the surface of a nonmagnetic chiral material and a magnetized scanning probe. In the paramagnetic but chiral metallic compound Co1/3NbS2, the magnetization induced by the tunneling current is shown to become detectable by its coupling to the magnetization of the tip itself. This results in a contrast across different chiral domains, achieving atomic-scale spatial resolution of structural chirality. To support the proposed mechanism, we used first-principles theory to compute the chirality-dependent current-induced magnetization and Berry curvature in the bulk of the material. Our demonstration of this magnetochiral tunneling effect opens up an avenue for investigating atomic-scale variations in the local crystallographic symmetry and electronic structure across the structural domain boundaries of low-symmetry nonmagnetic crystals.

     
    more » « less
    Free, publicly-accessible full text available March 5, 2025
  2. Free, publicly-accessible full text available June 1, 2024
  3. Abstract

    The rapid decline of Arctic sea ice, including sea ice area (SIA) retreat and sea ice thinning, is a striking manifestation of global climate change. Analysis of 40 CMIP6 models reveals a very large spread in both model simulations of the September SIA and thickness and the timing of a summer ice-free Arctic Ocean. The existing SIA-based evaluation metrics are deficient due to observational uncertainty, prominent internal variability, and indirect Arctic response to global forcing. Given the critical roles of sea ice thickness (SIT) in determining Arctic ice variation throughout the seasonal cycle and the April SIT bridging the winter freezing and summer melting processes, we propose two SIT-based metrics, the April mean SIT and summer SIA response to April SIT, to assess climate models’ capability to reproduce the historical change of the Arctic sea ice area. The selected 11 good models reduce the uncertainty in the projected first ice-free Arctic by 70% relative to 11 poor models. The chosen models’ ensemble mean projects the first ice-free year in 2049 (2043) under the shared socio-economic pathways (SSP)2-4.5 (SSP5-8.5) scenario with one standard deviation of the inter-model spread of 12.0 (8.9) years.

     
    more » « less
  4. A bstract In the framework where the strong coupling is dynamical, the QCD sector may confine at a much higher temperature than it would in the Standard Model, and the temperature-dependent mass of the QCD axion evolves in a non-trivial way. We find that, depending on the evolution of Λ QCD , the axion field may undergo multiple distinct phases of damping and oscillation leading generically to a suppression of its relic abundance. Such a suppression could therefore open up a wide range of parameter space, resurrecting in particular axion dark-matter models with a large Peccei-Quinn scale f a ≫ 10 12 GeV, i.e., with a lighter mass than the standard QCD axion. 
    more » « less
  5. Ferroelectric hafnium and zirconium oxides have undergone rapid scientific development over the last decade, pushing them to the forefront of ultralow-power electronic systems. Maximizing the potential application in memory devices or supercapacitors of these materials requires a combined effort by the scientific community to address technical limitations, which still hinder their application. Besides their favorable intrinsic material properties, HfO2–ZrO2 materials face challenges regarding their endurance, retention, wake-up effect, and high switching voltages. In this Roadmap, we intend to combine the expertise of chemistry, physics, material, and device engineers from leading experts in the ferroelectrics research community to set the direction of travel for these binary ferroelectric oxides. Here, we present a comprehensive overview of the current state of the art and offer readers an informed perspective of where this field is heading, what challenges need to be addressed, and possible applications and prospects for further development.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2024